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Abstract-The method of caustics is applied to problems of simply supported plates under uniform loading.
The shape and properties of the caustic, created by an initial curve lying inside the plate, as well as the
pseudocaustic created by the edges of the plate, are completely investigated. It is shown that it is possible
to determine the existing loading of the plate from the experimentally determined caustic or pseudocaustic.
The cases of simply supported circular, triangular and square plates subjected to uniform loading are
examined in detail. It is shown that the experimentally obtained caustics are in good agreement with their
corresponding theoretical forms, indicating thus the accuracy of the method of caustics to the study of
flexed plate problems.

1. INTRODUCTION

The method of caustics, introduced by Theocaris [1] and successfully applied to a series of
singular stress fields in elastic and plastic media[2-5], was then used for the experimental
solution of flexed plate problems [6]. The advantages of this experimental technique over most
well-known techniques for the experimental solution of flexed plate problems were emphasized.
The cases of a triangular plate loaded by a uniform moment distribution along its edges, as well
as the problem of the axisymmetric plates were considered as examples to show the poten­
tialities of the method. However, in Ref. [6] only one case of plate and loading was possible to
be solved.

In this paper, the theory of Ref. [6] will be generalized and extended to incorporate the
caustics and pseudocaustics created by uniformly loaded plates. The cases of circular, equila­
teral triangular and square plates will be treated in detail. It is shown that the theoretical forms
of the caustics and pseudocaustics created by such plates are in good agreement with the
experimentally obtained caustics and pseudocaustics. It was concluded that the method of caustics
can be successfully used for the experimental determination of the existing loading on plates, in the
same way as it has been already used for the analogous problems of elastic and plastic media under
generalized plane stress conditions.

2. THE METHOD OF CAUSTICS

In accordance with the method of caustics, a correspondence between each point P(x, y) of
the plate and its reflected image P'(u, v) on a reference screen is established (Fig. 1). It was
shown that, if w(x, y) is the deflection of the plate, obeying the differential equation [7, p. 82]:

(1)

where q = q(x, y) is the normal loading and D the flexural rigidity of the plate, it is valid that [6]:

(
2zo aw) (2Zoaw)u=A x+-- v=A y+--
A ax ' A ay . (2)

In eqns (2), Zo is the distance between the screen and the plate, considered as positive, and A
is the magnification ratio of the optical arrangement given by:

(3)

where Zj is the distance between the focus of the convergent or divergent light beam impinging
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Fig. 1. Geometry of a plate illuminated by a parallel light beam and relative position of the plate and the
screen where the pseudocaustic and the caustic are formed.

on the specimen and the specimen itself. Through eqns (2), a correspondence between the
points P(x, y) of the plate and P'(u, v) of the screen is established.

If we consider the boundary of the plate expressed in a parametric form: x = x(s), y = y(s)
(e.g. as a function of the arc-length s along it), then a corresponding curve is determined on the
screen, through eqns (2), which is a boundary of the image of the plate on the screen. This
curve, called pseudocaustic, is generated by the image of the boundary of the plate. Its
parametric equations are functions of the parameter s used for the parametric expression of the
boundary of the plate.

It can also be shown that, besides the pseudocaustic, related to the real boundary of the
plate, another characteristic curve on the screen, called caustic, is formed. The caustic has the
property that the points of the plate in the neighbourhood of the points corresponding to the
points of the caustic have their corresponding images on the screen lying always in the same
side of the caustic. Thus, the caustic can be defined as the curve limiting the points P'(u, v) on
the screen, determined by eqns (2), or the curve formed by the relative maxima or minima of u
and v, under the constraints v = constant and u = constant respectively. In the one side of the
caustic a high density of light rays reflected from the plate is observed.

For the creation of a caustic on the screen, a necessary, but not sufficient, condition is that
the points P(x, y) on the plate and the corresponding points P'(u, v) on the screen fulfill the
condition [1,6]:

au au- -
J=a(u,v)= ax ay

=0, (4)
a(x, y) av av- -

ax By

that is they cause the zeroing of the Jacobian determinant J of (u, v) with respect to (x, y). Then
the points P'(u, v) in the neighbourhood of the points of the caustic (and only in the one side of
it) do not correspond in only one way to the corresponding points P(x, y) of the plate. Equation
(4) defines on the plate a curve from which the caustic on the screen is created. This curve is
called the initial curve of the caustic.

In the sequel, we will study the caustics formed from simply supported plates under uniform
loading q and namely the cases of circular, equilateral triangular and square plates. Before
proceeding to these problems, we can also observe that eqn (4) for the initial curve of a caustic
can also be written, because of eqns (2), under the form:

1+ 2zoa
2
w 2zo a2w

J=
A --axr A axay

=0. (5)
2zo a2w 1 2zoa

2
w

A axBy +Tayz

If the function w is expressed in polar coordinates (r, it), that is w = w(r, it), then eqns (2)
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and (4) of the caustic and its initial curve can be expressed as follows:

[
2zo (aW 1 aw. )]u = A r cos -& +- - cos -& - - - sm -& ,
A ar r a-&

[
• _<> 2zo(aw . _<> 1 aw _<»]

v = A r sm 11 +T ar sm 11 +ra-& cos 11 ,

and:
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(6)

J' = r =0.

(7)

Equations (6) can also be used for the determination of the pseudocaustic on the screen in the
case when the coordinates (r, -&) of the points of the boundary of the plate are inserted in them.

3. CIRCULAR PLATES

(a) Equations of caustics and pseudocaustics
We consider now a simply supported circular plate of radius a loaded by a uniform load

distribution q. The material of the plate is supposed to have a modulus of elasticity E and
Poisson's ratio /I. Under these conditions, the expression for the deflection of the plate is [7, p.
57]:

= q(a
2

- r
2

) (k 2_ 2) k = 5+ /I (0 < <!!! s; k s; 5)
w 64D a r, I + /I = /I = 2' 3 - - ,

where D is the flexural rigidity of the plate.
Inserting relation (8) into eqns (6), we obtain:

u = Ar cos -&[1- C(m - (r/a)2)],

v = Ar sin -&[1- C(m -(r/af)],

where the constants C and m are defined by:

C = zoqa 2/(8AD), m = (k + 1)/2 (7/3 ~ m ~ 3).

(8)

(9)

(to)

The constant C will be supposed to be positive. This is a necessary, but not sufficient, condition
so that a caustic exists, as it will be seen in the sequel.

If we consider on the screen a system of polar coordinates (p, cp), then eqns (9) result in:

p=ArJl-C(m-(r/a)2)1, cp=-& or (-&+1T). (11)

The pseudocaustic on the screen is obtained from eqns (11) by putting r = a. Thus, we
obtain:

pp=Aall-C(m-l)I, cp=-& or (-&+1T),

that is the pseudocaustic is a circle of radius PP lying on the screen.

(12)



1284 P. S. THEOCARIS

The initial curve of the caustic on the plate is determined by considering eqn (5) and taking
into account eqn (8). Thus, it is obtained:

J = [C(rlaf-(Cm -1)][3C(rla)2_(Cm -I)] = o.

From eqn (13) there result two values of the radius rj of the initial curve:

rj = a«m - I/C)/3)1/2.

(13)

(l4a)

(l4b)

The first of these values, because of eqn (II), gives on the screen p = O. Hence, it cannot be
considered as giving the radius of the initial curve of a caustic. On the contrary, the second of
these values, under the assumption that:

Cm> 1, (I5)

constitutes the equation of the initial curve of the caustic on the plate. This curve has the shape
of a circle.

By substituting this value of rj into eqn (II), it is found that the caustic on the screen is also
a circle of radius:

(6)

It can also be remarked that the point of the caustic corresponding to the point (r, it) of the
initial curve has polar coordinates (Peo it + 1T), as it can be verified from eqns (9).

We can also remark that for a problem with radial symmetry eqn (7) for the initial curve of a
caustic is simplified as:

aplar = o. (17)

By substituting the expression of p, given by eqn (II), into eqn (17), eqn (l4b) of the radius rj of
the initial curve is obtained again.

(b) Investigation of eqns (l4b) and (16)
As it was previously shown, the pseudocaustic forms the circumference of a circle of radius

PP given by eqn (12). It can be shown from eqn (12) that the pseudocaustic exists independently
of the value of the constant C, which has been assumed to be positive. For C =0, that is for an
unloaded circular plate, there results PP = Aa, which means that the circumference of the circle
has been magnified on the screen with a magnification ratio equal to A. As the constant C
increases, the radius of the pseudocaustic decreases and for C = l/(m -I) the pseudocaustic
degenerates into the point p = O. For a further increase of C. the radius PP of the pseudocaustic
begins to increase without limitations. These facts are shown in the following Table for the
radius PP of the pseudocaustic, considered as a function of C:

C 0 increases l!(m -I) increases

PP Aa decreases 0 increases

An analogous investigation can be also made for the radius of the caustic on the screen. As
it was previously pointed out, a caustic is formed on the screen only if inequality (15) is
satisfied. In this case, the radius Pc of the caustic is given by eqn (16). From this equation we
observe that, because of limitation (15), the term (Cm -I) is always positive. Because of the
relation: 7/3 ~ m ~ 3, it can be concluded that the initial curve of the caustic on the plate, the
radius rj of which is given by eqn (l4b), lies always inside the circular plate, tending to coincide
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with its circumference when the constant C tends to infinity and at the same time Poisson's
ratio v of the material of the plate tends to zero, since in this case k -+ 5 and m -+ 3. Hence,
under the limitation (15), there is always an initial curve on the plate and a caustic on the screen.

As regards the radius Pc of the caustic, given by eqn (16), the limitation (15) being satisfied,
it increases as the value of the constant C increases. These facts are shown in the following
table for the radius Pc of the caustic, considered as a function of C:

C 0 increases 11m increases

Pc there is no caustic 0 increases

Since the radius PP of the pseudocaustic decreases as C increases up to the value I/(m - 1)
(in which case PP = 0), whereas the radius Pc of the caustic increases as C increases from the
value 11m (in which case Pc = 0), there follows that for a value of C in the interval:

11m < C < I/(m -1) (18)

the pseudocaustic and the caustic will have equal radii (pp = Pc) and, therefore, they will
coincide on the screen. This value of C, resulting by equating the radii PP and Pc of the
pseudocaustic and the caustic, given by eqns (12) and (16) respectively, will be a root of the
following equation of the third degree:

[4m 3
- 27(m _1)2]C3

- 6[2m 2
- 9(m -1)]C2+3[4m - 9]C - 4 = O. (19)

For the special case where m = 3, there results C = 4/9, a value which is in agreement with
the limitation (18). Furthermore, it can be easily seen that the sum of the roots of eqn (19) is
negative, while their product is positive. Since this equation is of the third degree and has, as it
was already mentioned, one positive root, it follows that its other two roots are either negative
or complex. But in both these cases these roots are of no importance. It can also be noted that,
the constant C tending to infinity, the caustic remains lying outside the pseudocaustic. It can be
finally remarked that the points of the screen constituting the image of the plate are the points
of the circle defined by the pseudocaustic or the caustic, this depending on which of these two
curves has the greater radius, since it is impossible that the image of the plate on the screen has
the form of an annulus.

Extensive experimental evidence was provided for the above-established theoretical results.
Thin circular plates of radius a = 4.1 cm were cut from a plain plexiglas sheet of thickness
t = 0.21 cm. The elastic modulus and Poisson's ratio of plexiglas were determined by a tension
specimen and found to be E =32,000 kp/cm2 and v =0.36. From these values the flexural
rigidity D of the plate, given by the relation [7, p. 5]:

(20)

was calculated and found to be D = 28.37 kp cm. The plexiglas plates were put to a simple jig
for the application of the load.

For obtaining the caustics and pseudocaustics of the loaded plates a He-Ne laser light beam
was impinged on the specimens and the reflected light rays were received on a reference screen.
A schematic diagram of the experimental apparatus is shown in Fig. 2.

In order to get a series of caustics corresponding to various values of the global constant C
and thus to verify the above-established theoretical considerations, the reference screen was
placed at various distances Zo from the specimen. To each such position the values of the
constant C were determined from the first of eqns (10) with the value of the magnification ratio
,\ being equal to 1. Moreover, from the second of eqns (8) and (10) it was found that k = 3.94
and m = 2.47, while the loading intensity q was equal to q = 0.245 kp/cm2

• As regards the
distance between the specimen and the screen, it was variable.
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Fig. 2. Schematic diagram of the experimental apparatus.

Figure 3 presents a series of six optical patterns obtained on the screen by moving
progressively it with respect to the specimen. These patterns corresponded to the following
values of the constant C: C = 0.362 (a), 0.507 (b), 0.598 (c), 0.725 (d), 0.761 (e) and 1.160 (f). It
can be observed from Fig. 3a that the only curve that is formed on the reference screen is the
pseudocaustic and that no caustic is formed. This corroborates the previously established result
that, when C < 11m, no caustic is formed. Indeed, for the Fig. 3(a) this relation is satisfied
(C = 0.362, 11m = 0.405). Nevertheless, even in Fig. 3(a), a highly illuminated region around the
centre of the image of the plate on the screen is observed. This fact denotes that the caustic is
about to be formed after a small increase of C. In Fig. 3(b) a small caustic is seen and the
radius Pp of the pseudocaustic decreased, compared to its value corresponding to Fig. 3(a)
(11m < C < Co where Co corresponds to the case where Pp = Pc; the value of Co was calculated
from eqn (19) and it was found to be Co = 0.581). In Fig. 3(c) the radii of the pseudocaustic PP
and the caustic Pc are almost equal (C = Co = 0.581). In Fig. 3(d) the radius of the pseudocaustic
PP is almost zero while the radius of the caustic Pc is always increasing (C = I/(m -I) = 0.680).
In Fig. 3(e) the radius of the pseudocaustic PP begins to increase again like the radius of the
caustic Pc (C> I/(m -I) = 0.680). The region of the screen corresponding to the whole plate is

(0)

(b)

(c)

(d)

(e)

Fig. 3. Experimentally obtained pseudocaustics and caustics for a simply supported and uniformly loaded
circular plate.
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included inside the caustic, the circle defined by the pseudocaustic included also in it. Each
point inside the pseudocaustic (p < pp) on the screen corresponds only to one point of the plate,
while each point inside the annulus (pp < P< Pc) corresponds to two completely different points
of the plate, of course lying on the same polar direction. Finally, in Fig. 2(f) it is seen that the
radius of the pseudocaustic PP remains smaller than the radius of the caustic Pc as it was
already concluded theoretically.

For all the optical patterns pictured in Fig. 3 the corresponding radii Pc and PP of the
caustics and the pseudocaustics were calcul.ued through eqns (16) and (12) respectively from
the values of the constants a, A. C and m. Thus, a quantitative comparison with the caustics of
Fig. 3 was made. It was found that the radii Pc and PP should take the following values in cm,
corresponding to the photographs of Fig. 3: Pc. =0.283 (b), 0.674 (c), 1.305 (d), 1.495 (e) and
3.735 (f) and PP = 1.914 (a), 1.040 (b), 0.493 (c), 0.272 (d), 0.490 (e) and 2.895 (f). By comparing
these values of the radii Pc and PP with the corresponding experimental values, it was seen that
the divergence between these two sets of values was in all cases less than 0.2 cm. This small
divergence between the theoretical and experimental results proves the potentiality of the
technique developed for the solution of flexed plate problems.

4. EQUILATERAL TRIANGULAR PLATES

We consider now an equilateral triangular plate of height a referred to a coordinate system
Oxy with centre a coinciding with the centre of the triangle and its Ox-axis along a height of the
triangle (Fig. 4). If this plate is considered simply supported and loaded by a uniform load q, the
following relation determines the deflection w(x, y) of its points P(x, y) [7, p. 313]:

(21)

where D is again the flexural rigidity of the plate.
By substituting this value of w into eqn (5), we obtain, after some algebra, for the initial

curve of the caustic:

(22)

where

B = - 3x 3
- 3xy 2 +a(x2 -l) +2a 2x/3,

E = (3x 2 +3l+2ax - 2a 2/3)y.

Equation (22) for the initial curve of the caustic can be written in polar coordinates as:

[I - 2(C/a3)(r3 cos 3it - ar2 +4a 3/27)f

= (C2/a 6)[(3r2
- 2a 2/Wr2 +a2r4

- 2a(3r2
- 2a 2/3)r3 cos 3it].

(23)

(24)

(25)

From eqn (25) we observe that, if we replace it by (-it) or (it ± 27T/3), this equation does not
change, as it was expected because of the symmetry of the triangular plate. Consequently, it is
sufficient to solve eqn (25) with respect to r only in the interval 0 ~ it ~ 7T/3. The corresponding
points of the caustic on the screen can be afterwards easily found by using eqns (2).

These equations can be also used for the determination of the point P'(u, v) of the screen
corresponding to any point P(x, y) of the plate. In particular, the edges of the triangular plate
will give the points of the pseudocaustic on the screen. Because of the symmetry of triangular
plate, it is sufficient to consider only one of its edges, e.g.: x = - a/3, -a/v(3) ~ y ~ a/v(3), and
to determine the corresponding side of the pseudocaustic on the screen. Thus, from eqn (21) we
find for the points of the edge of the plate considered:

aw = _q_ (3 y4 _ 2a 2y2 +a4/3) aw = 0
ax MaD ' ay . (26)
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Fig. 4. Theoretically obtained pseudocaustics (-), initial curves (------) and caustics (--) for a simply
supported and uniformly loaded equilateral triangular plate (A = I).

The second of these equations is obvious because the triangular plate is simply supported along
its edges. Then eqns (2) give for the points P'(up , vp ) of the corresponding side of the
pseudocaustic :

Up = A[-a/3 +C(3l- 2a 2l+ a4f3)f(4a 3
)], vp = Ay,

-ah/(3) ~ y ~ afy'(3), (27)

the constant C given again by the first of eqns (10).
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In accordance with these developments, the pseudocaustics, initial curves and caustics
corresponding to the cases C = 1, C = 4 and C = 6 have been determined and are shown in Figs.
4(a)-4(c) respectively. It can be noted that for small values of C (as in Fig. 4(a» no caustic exists. In
Figs. 5(a)-5(c) the experimentally obtained pseudocaustics and caustics, corresponding to those
shown in Figs. 4(a)-4(c) respectively, are presented. The experimentally obtained caustics of Figs.
5(a)-5(c) are satisfactorily compared with their corresponding theoretical forms of Figs. 4(a)-4(c).

Finally, we can remark that, although the form of the caustic completely changes as the
loading intensity q (and the constant C because of the first of eqns (10» increases, nevertheless,
the shape of pseudocaustics does not change too much as it can also be seen from eqns (27) for
increasing values of C, which almost plays the role of a magnification ratio.

(0) (b) (c)

Fig. 5. Experimentally obtained pseudocaustics and caustics for a simply supported and uniformly loaded
equilateral triangular plate.

5. SQUARE PLATES

As a last example we consider a simply supported square plate of side a loaded by a
uniform load q. A coordinate system Oxy with its centre 0 at the middle of one side of the
square and its Oy-axis coinciding with this side is attached to the plate (Fig. 6). The deflection
w(x, y) of the points P(x, y) of the plate is given by [7, p. 115]:

4 '"
W= -.!L (x4- 2ax3+ a3x) +~ L (A cosh m7TY + B m7TY sinh m7TY) sin m7TX

24D D m=1,3.5... m a m a a a '
(28)

where D denotes again the flexural rigidity of the plate and the coefficients Am and Bm are
determined by:

A = _ 2(cm tanh Cm +2)
m 7T5m5cosh Cm '

(29)

The equations of the initial curve of the caustic and the caustic can be determined by
substituting the derivatives of w(x, y) with respect to x and y in eqns (2) and (5).

We can also determine the part of the pseudocaustic formed on the screen from an edge of
the plate. If we consider, for example, the edge: x = 0, -a/2;a y;a a/2 of the square plate, we
find for its points from eqn (28):

~; = ~3 [2~ + m=~.5... m7T (Am cosh m;y +Bm m;y sinh m;y) ], ~;= 0, (30)

the second of these equations justified by the fact that the square plate was considered simply
supported. Then, eqns (2) give for the points P'(up , vp ) of the corresponding side of the
pseudocaustic:

Up = -(A -1)a/2 + 2zoawlax, vp = Ay (x = 0, -a/2;a y;a a/2), (31)
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C=2.5

(c)

"'" 0 --""'I

a'O.'x+a/2,
y

C=2.0

(b)

Fig.6. Theoretically obtained pseudocaustics (--), initial curves (-----) and caustics (--) for a simply
supported and uniformly loaded square plate (A = 1).

where awl ax for x = 0 is given by the first of eqns (30). Also the light beam has been considered
incident normally at the centre of the square plate and not at the origin a of the coordinate
system. Because of the symmetry of the square plate and the way of its loading, it is sufficient
for determining the whole pseudocaustic, that only one of its sides be determined through eqns
(30) and (31).

In accordance with these considerations, the pseudocaustics, initial curves and caustics,
corresponding to the cases where the constant C, given by the first of eqns (10), is equal to 1.5,2.0
2.5, have been determined and shown in Figs. 6(a)--6(c) respectively. Furthermore, in Figs.
7(a)-7(c) the experimentally obtained pseudocaustics and caustics, corresponding to those shown
in Figs. 6(a)-6(c), are shown. The coincidence of the theoretically and experimentally obtained
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(0) (b) (c)

Fig. 7. Experimentally obtained pseudocaustics and caustics for a simply supported and uniformly loaded
square plate.

pseudocaustics and caustics is again excellent, as in the cases of circular and equilateral triangular
plates.

Finally, for increasing values of the loading intensity q, it is observed that the shape of the
caustics changes significantly although the same is not true for the shape of pseudocaustics,
exactly as happened in the case of an equilateral triangular plate.

CONCLUSIONS

In this paper the method of caustics, already successfully used for the solution of a large
number of singular elastic and plastic stress fields, was applied to the case of simply supported
and uniformly loaded plates. It was shown that the pseudocaustics and caustics, created by the
boundaries of the plates and the initial curves respectively, can be easily determined both
theoretically and experimentally. For the cases of a circular, an equilateral triangular and a
square plate considered in detail, the theoretically and experimentally obtained pseudocaustics
and caustics are in very good agreement. This fact, together with the theory developed in this
paper, can be used for the experimental evaluation of the existing loading of the plate by simple
measurements of some geometrical characteristics of the pseudocaustics and caustics created.
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